From 1 - 10 / 26
  • <div>This report summarises information regarding groundwater processes considered to have direct influence on the water balance for the Great Artesian Basin (GAB). These processes are recharge, discharge, and connectivity within the GAB sequence, as well as connectivity with underlying basins and overlying cover. </div><div>The substantial body of literature available on the GAB gives the impression that there is a considerable degree of understanding of the GAB groundwater system. This is, however, misleading. The reality is that many reports and reviews have been cited or reworked from pre-existing studies without carrying over the original uncertainties. Over time, the scale of knowledge gaps has been reduced only incrementally, while there has been a growing appreciation of the complexities in the system. With so much conceptual and quantitative uncertainty, much additional investigation is still required.</div><div><br></div>

  • This report presents palynological data compiled and analysed as part of the National Groundwater Systems (NGS) Project. NGS is part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. This study builds on previous work (Hannaford et al., 2022) undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion. The study undertaken by MGPalaeo, in collaboration with Geoscience Australia, examined an additional 688 boreholes across the GAB and compiled 149 new palynological summary sheets having Jurassic‒Cretaceous succession, with reviewed palynology data (down to total depth). The combined borehole palynological data examined from this study and the previous GAB work (Hannaford et al., 2022) is compiled in Appendix B4. The combined dataset totals 1,394 boreholes examined and 652 with palynology in the stratigraphic interval of interest, 102 of these boreholes contained Cenozoic palynology relevant to the Lake Eyre Basin. This information has been used to revise stratigraphic correlations across the GAB (Norton & Rollet, 2022 and 2023). Initial review of the stratigraphy in the Lake Eyre Basin (LEB) compiled existing palynology from outcrop, mineral and petroleum boreholes. An additional 28 boreholes in the Upper Darling Floodplain region were examined, 16 of which contained relevant palynology. The main palynological data infill in the GAB and LEB region during this follow-up study focused on: 1. Collecting, processing and analysing new biostratigraphic data on 149 key boreholes particularly across the Eromanga and Surat basins boundary. The study focussed on integrating data in New South Wales from the southern Surat Basin and central Eromanga Basin. 2. Further palynological data infill and palynological analysis on 15 samples from 7 boreholes in the western Eromanga Basin to assess difficulties in correlating the stratigraphy across the Algebuckina Sandstone. 3. Compiling existing analyses and update any historical palynological data in the Lake Eyre Basin to reflect the latest zonation scheme developed in this study. The new palynological data combined with new zircon data from other studies in the Carpentaria and Surat basins (Foley et al., 2020, 2021, 2022; La Croix et al., 2022, respectively) provides information on the tie to the geological timescale and help refine the chronostratigraphic chart that summarises stratigraphic correlations across the Carpentaria, Surat and Eromanga basins of Hannaford et al. (2022). All boreholes were examined outside of the Cooper and Bowen basins boundaries with selected boreholes around transects defined for stratigraphic correlation review through the Cooper and Bowen basin outlines (Norton & Rollet, 2022 and 2023). As a result, most of the remaining unreviewed palynological data lies within the Cooper and Bowen basins. The results of the palynology data infill in the western Eromanga Basin, in South Australia and Northern Territory, show that the Algebuckina Sandstone section is dominated by clean sandstone and so the cuttings samples were also dominated by sand. Although attempts were made to concentrate the shale from the cuttings in the thicker shale mid formation, this did not yield results, due to the amount of caved Cretaceous material. An initial assessment of the Lake Eyre Basin palynological data and zonation scheme was undertaken using information derived from water, mineral and petroleum boreholes. This provides an initial state of knowledge for the Lake Eyre Basin that can be built on in the future. Recommendations are provided for further studies to build a better understanding of the stratigraphy in the Great Artesian and Lake Eyre basins.

  • The National Groundwater Systems (NGS) project, is part of the Australian Government’s Exploring for the Future (EFTF) program, led by Geoscience Australia (https://www.eftf.ga.gov.au/national-groundwater-systems), to improve understanding of Australia’s groundwater resources to better support responsible groundwater management and secure groundwater resources into the future. The project is developing new national data coverages .to further delineate groundwater systems and improve data standards and workflows of groundwater assessment. While our conceptual understanding of the hydrogeology of the Great Artesian Basin (GAB, Figure 1) continues to grow, in many parts of the Eromanga, Surat and Carpentaria basins that form the GAB we are still reliant on legacy data and knowledge from the 1970s of variable quality. Additional information provided by recent studies in various parts of the GAB highlights the level of architectural complexity and spatial variability in stratigraphic and hydrostratigraphic units across the basin. We now recognise the need to standardise these regional studies to map such geological complexity in a consistent, basin-wide hydrostratigraphic framework that can support effective long-term management of GAB water resources. The recent iteration of revision of GAB geological and hydrogeological surfaces (Vizy & Rollet, 2022) provides a framework to interpret various data sets consistently (e.g., boreholes, airborne electromagnetic, seismic data) and in a 3D domain, to improve the aquifer geometry, and the lateral variation and connectivity in hydrostratigraphic units across the GAB (Rollet et al., 2022). Vizy and Rollet (2022) highlighted some areas with low confidence in the interpretation of the GAB where further data acquisition or interpretation may reduce uncertainty in the mapping. One of these areas was in the Carpentaria Basin, particularly the transition from the offshore to onshore across the Gulf of Carpentaria. This data compilation provides open file SEGY, cultural data and value added seismic interpretation in the form of seismic horizons and grids for two key surfaces, these enable improved correlation to existing studies. This data also aim to provide users an efficient mean to rapidly access core data from numerous sources in a consistent and cleaned format, all in a single package. This dataset provides: 1) Seismic data compilation in a digital format with publically accessible information, including scanned seismic sections converted to SEGY format where digital data was not available; 2) Base Mesozoic and Near Base Cenozoic seismic interpretation in two-way-time; 3) Depth converted regional surfaces for the Base Mesozoic and Near Base Cenozoic unconformities generated using additional constraints such as AEM interpretation and borehole constraints previously compiled in Vizy & Rollet (2022). This new interpretation will be used to refine the GAB geological and hydrogeological surfaces in this region.

  • <div>The project ‘Assessing the Status of Groundwater in the Great Artesian Basin’ assessed existing and new geoscientific data and technologies, including satellite data, to improve our understanding of the groundwater system and water balance in the GAB. An updated classification of GAB aquifers and aquitards was produced, linking the hydrostratigraphic classification used in Queensland (Surat Basin) with that used in South Australia (western Eromanga Basin). This revised hydrogeological framework was produced at the whole-of-GAB scale, through the development and application of an integrated basin analysis workflow, producing an updated whole-of-GAB stratigraphic interpretation that is consistent across jurisdictional boundaries. Groundwater recharge rates were estimated across eastern GAB recharge area using environmental tracers and an improved method that integrates chloride concentration in bores, rainfall, soil clay content, vegetation type and surficial geology. Significant revisions were made to the geometry and heterogeneity of the groundwater recharge beds, by acquiring, inverting and interpreting regional scale airborne electromagnetic (AEM) geophysical data, identifying potential connectivity between aquifers, possible structural controls on groundwater flow paths and plausible groundwater sources of spring discharge. A whole-of-GAB water balance was developed to compare inflows and outflows to the main regional aquifer groups. While the whole-of-GAB and sub-basin water balances provide basin-wide perspectives of the groundwater resources, they also highlight the high uncertainties in the estimates of key water balance components that need to be considered for groundwater resource management. Assessment of satellite monitoring data from Gravity Recovery and Climate Experiment (GRACE) and Interferometric Synthetic Aperture Radar (InSAR) shows promise for remote monitoring of groundwater levels at a whole-of-GAB scale in the future to augment existing monitoring networks. This presentation was given at the 2022 Australasian Groundwater Conference 21-23 November (https://www.aig.org.au/events/australasian-groundwater-conference-2022/)

  • <div>This document provides metadata for the gross depositional environment (GDE) interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project.&nbsp;&nbsp;</div><div>The AFER projects is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.&nbsp;</div><div>The GDE data sets provide high level classifications of interpreted environments where sediments were deposited within each defined play interval in the Pedirka, Simpson and Western Eromanga basins. Twelve gross depositional environments have been interpreted and mapped in the study (Table 1). A total of 14 play intervals have been defined for the Pedirka, Simpson and Western Eromanga basins by Bradshaw et al. (2022, in press), which represent the main chronostratigraphic units separated by unconformities or flooding surfaces generated during major tectonic or global sea level events (Figure 1). These play intervals define regionally significant reservoirs for hydrocarbon accumulations or CO2 geological storage intervals, and often also include an associated intraformational or regional seal.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</div><div>GDE interpretations are a key data set for play-based resources assessments in helping to constrain reservoir presence. The GDE maps also provide zero edges showing the interpreted maximum extent of each play interval, which is essential information for play-based resource assessments, and for constructing accurate depth and thickness grids.&nbsp;&nbsp;</div><div>GDE interpretations for the AFER Project are based on integrated interpretations of well log and seismic data, together with any supporting palynological data. Some play intervals also have surface exposures within the study area which can provide additional published paleo-environmental data. The Pedirka, Simpson and Western Eromanga basins are underexplored and contain a relatively sparse interpreted data set of 42 wells and 233 seismic lines (Figure 2). Well and outcrop data provide the primary controls on paleo-environment interpretations, while seismic interpretations constrain the interpreted zero edges for each play interval. The sparse nature of seismic and well data in the study area means there is some uncertainty in the extents of the mapped GDE’s.&nbsp;&nbsp;</div><div>The data package includes the following datasets:&nbsp;&nbsp;</div><div>Play interval tops for each of the 42 wells interpreted – provided as an ‘xlsx’ file.&nbsp;</div><div>A point file (AFER_Wells_GDE) capturing the GDE interpretation for each of the 14 play intervals in each of the 42 wells – provided as both a shapefile and within the AFER_GDE_Maps geodatabase.&nbsp;</div><div>Gross depositional environment maps for each of the 14 play intervals (note that separate GDE maps have been generated for the Namur Sandstone and Murta Formation within the Namur-Murta play interval, and for the Adori Sandstone and Westbourne Formation within the Adori-Westbourne play interval) – provided as both shapefiles and within the AFER_GDE_Maps geodatabase.&nbsp;</div><div>&nbsp;</div><div>These GDE data sets are being used to support the AFER Project’s play-based energy resource assessments in the Western Eromanga, Pedirka and Simpson basins.&nbsp;</div><div><br></div>

  • This data package, completed as part of Geoscience Australia’s National Groundwater Systems (NGS) Project, presents results of the second iteration of the 3D Great Artesian Basin (GAB) and Lake Eyre Basin (LEB) (Figure 1) geological and hydrogeological models (Vizy & Rollet, 2023) populated with volume of shale (Vshale) values calculated on 2,310 wells in the Surat, Eromanga, Carpentaria and Lake Eyre basins (Norton & Rollet, 2023). This provides a refined architecture of aquifer and aquitard geometry that can be used as a proxy for internal, lateral, and vertical, variability of rock properties within each of the 18 GAB-LEB hydrogeological units (Figure 2). These data compilations and information are brought to a common national standard to help improve hydrogeological conceptualisation of groundwater systems across multiple jurisdictions. This information will assist water managers to support responsible groundwater management and secure groundwater into the future. This 3D Vshale model of the GAB provides a common framework for further data integration with other disciplines, industry, academics and the public and helps assess the impact of water use and climate change. It aids in mapping current groundwater knowledge at a GAB-wide scale and identifying critical groundwater areas for long-term monitoring. The NGS project is part of the Exploring for the Future (EFTF) program—an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The program seeks to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources, including those to support the effective long-term management of GAB water resources. This work builds on the first iteration completed as part of the Great Artesian Basin Groundwater project (Vizy & Rollet, 2022; Rollet et al., 2022), and infills previous data and knowledge gaps in the GAB and LEB with additional borehole, airborne electromagnetic and seismic interpretation. The Vshale values calculated on additional wells in the southern Surat and southern Eromanga basins and in the whole of Carpentaria and Lake Eyre basins provide higher resolution facies variability estimates from the distribution of generalised sand-shale ratio across the 18 GAB-LEB hydrogeological units. The data reveals a complex mixture of sedimentary environments in the GAB, and highlights sand body development and hydraulic characteristics within aquifers and aquitards. Understanding the regional extents of these sand-rich areas provides insights into potential preferential flow paths, within and between the GAB and LEB, and aquifer compartmentalisation. However, there are limitations that require further study, including data gaps and the need to integrate petrophysics and hydrogeological data. Incorporating major faults and other structures would also enhance our understanding of fluid flow pathways. The revised Vshale model, incorporating additional boreholes to a total of 2,310 boreholes, contributes to our understanding of groundwater flow and connectivity in the region, from the recharge beds to discharge at springs, and Groundwater Dependant Ecosystems (GDEs). It also facilitates interbasinal connectivity analysis. This 3D Vshale model offers a consistent framework for integrating data from various sources, allowing for the assessment of water use impacts and climate change at different scales. It can be used to map groundwater knowledge across the GAB and identify areas that require long-term monitoring. Additionally, the distribution of boreholes with gamma ray logs used for the Vshale work in each GAB and LEB units (Norton & Rollet, 2022; 2023) is used to highlight areas where additional data acquisition or interpretation is needed in data-poor areas within the GAB and LEB units. The second iteration of surfaces with additional Vshale calculation data points provides more confidence in the distribution of sand bodies at the whole GAB scale. The current model highlights that the main Precipice, Hutton, Adori-Springbok and Cadna-owie‒Hooray aquifers are relatively well connected within their respective extents, particularly the Precipice and Hutton Sandstone aquifers and equivalents. The Bungil Formation, the Mooga Sandstone and the Gubberamunda Sandstone are partial and regional aquifers, which are restricted to the Surat Basin. These are time equivalents to the Cadna-owie–Hooray major aquifer system that extends across the Eromanga Basin, as well as the Gilbert River Formation and Eulo Queen Group which are important aquifers onshore in the Carpentaria Basin. The current iteration of the Vshale model confirms that the Cadna-owie–Hooray and time equivalent units form a major aquifer system that spreads across the whole GAB. It consists of sand bodies within multiple channel belts that have varying degrees of connectivity' i.e. being a channelised system some of the sands will be encased within overbank deposits and isolated, while others will be stacked, cross-cutting systems that provide vertical connectivity. The channelised systemtransitions vertically and laterally into a shallow marine environment (Rollet et al., 2022). Sand-rich areas are also mapped within the main Poolowanna, Brikhead-Walloon and Westbourne interbasinal aquitards, as well as the regional Rolling Downs aquitard that may provide some potential pathways for upward leakage of groundwater to the shallow Winton-Mackunda aquifer and overlying Lake Eyre Basin. Further integration with hydrochemical data may help groundtruth some of these observations. This metadata document is associated with a data package including: • Seventeen surfaces with Vshale property (Table 1), • Seventeen surfaces with less than 40% Vshale property (Table 2), • Twenty isochore with average Vshale property (Table 3), • Twenty isochore with less than 40% Vshale property (Table 4), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity between isochore (Table 5), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity with isochore above and below (Table 6), • Seventeen upscaled Vshale log intersection locations (Table 7), • Six regional sections showing geology and Vshale property (Table 8), • Three datasets with location of boreholes, sections, and area of interest (Table 9).

  • This web service provides access to geological, hydrogeological and hydrochemical digital datasets that have been published by Geoscience Australia for the Great Artesian Basin (GAB).

  • This report presents a stratigraphic review of some key boreholes across the Jurassic-Cretaceous Eromanga, Surat and Carpentaria basins that form the groundwater Great Artesian Basin (GAB), as well as across the overlying Cenozoic Lake Eyre Basin (LEB), completed during the National Groundwater Systems (NGS) Project. The NGS Project is part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and information acquisition program focused on better understanding the potential mineral, energy and groundwater resources across Australia. The study presented here builds on previous work (Norton & Rollet, 2022a) undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ Project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion. Although not intended to be a major re-interpretation of existing data, this stratigraphy review updates stratigraphic picks where necessary to obtain a consistent interpretation across the study area, based on the refined geological and hydrostratigraphical framework developed through this project. Problems and inconsistencies in the input data or current interpretations have been highlighted to suggest where further studies or investigations may be useful. This study includes Phase 2 of the National Groundwater Systems Project, which was undertaken by Catherine Jane Norton in collaboration with Geoscience Australia; and compiled, processed and correlated a variety of borehole log data to review the stratigraphy and improve the understanding of distribution and characteristics of Jurassic and Cretaceous sediments across the Eromanga and Surat basins and overlying LEB. To complement the previous 322 key boreholes compiled in Phase 1 (Norton & Rollet, 2022) additional stratigraphic correlations have been made between geological units of similar age (constrained using palynological data) from 706 key boreholes along 35 regional transects across the GAB and from 406 key boreholes along 20 regional transects across the central LEB. Also included in this study is Phase 3 in-fill work of four additional transects, extending the study further south in New South Wales, to tie in to the Cenozoic of the Murray Basin. This later phase 3 of the project also included a review and quality control of approximately 2,572 central LEB boreholes, and the addition of 278 boreholes in the GAB in southern Queensland and New South Wales. Phase 3 also expanded on the results used for mapping regional sand/shale ratios that began in the previous phase (Evans et al., 2020; Norton & Rollet, 2022a). Normalised Gamma Ray (GR) calculations have now been made for 1,778 LEB boreholes and 676 GAB boreholes spanning the entire sequence from the surface, through the Cenozoic and down to the base Jurassic unconformity. The previous phase, mentioned above, concentrated on either just the LEB or the GAB intervals from Cadna-owie Formation to base Jurassic. An additional 17 transects in the LEB and 27 transects in the GAB were created to visualise the lithological variation. The distribution of generalised sand/shale ratios are used to estimate the thickness of sand and shale in different formations, with implications for formation porosity and the hydraulic properties of aquifers and aquitards. This study fills data gaps identified in the previous study (Norton & Rollet, 2022) and refines the regional distribution of lithological heterogeneity in each hydrogeological unit, contributing to an improved understanding of connectivity within and between aquifers. The datasets compiled and examined in this study are in Appendix A. Attempts were made to standardise lithostratigraphic units, which are currently described using varying nomenclature, to produce a single chronostratigraphic chart across the entirety of the GAB and LEB basins. The main stratigraphic correlation infill in the GAB and LEB regions focused on: • The transition between the Eromanga and Surat basins in New South Wales and the tie-in to existing transects in Queensland and South Australia, • The Eromanga Basin in South Australia and Queensland and the tie-in to Phase 1 transects, • The central Eromanga Basin and Frome Embayment areas, extending the GAB units to the overlying Lake Eyre Basin stratigraphy to better assess potential connectivity between these basins, • The transition between the Lake Eyre and Murray Basins in the Upper Darling Floodplain (UDF) area in New South Wales and the tie-in to Phase 1 transects in New South Wales. This report and associated data package provide a data compilation on 706 and 278 key boreholes in the Surat and Eromanga basins respectively, to assist in updating the geological framework for the GAB and LEB. Recommendations are provided for further studies to continue refining the understanding of the stratigraphy in the Great Artesian and Lake Eyre basins.

  • The Australian Government, through the National Water Infrastructure Development Fund, commissioned Geoscience Australia to undertake a 3-year project ‘Assessing the Status of Groundwater in the Great Artesian Basin’. The overall aim of the project was to analyse existing and new geoscientific data acquired by the project to improve understanding of the hydrogeological system and water balance in the GAB. In conjunction, the project assessed satellite based technologies for monitoring groundwater storage and level change. This talk will discuss some of the key results of the project. These include: an updated hydrogeological framework for the GAB, mapping aquifer and aquitard properties, geometry and extent; revised groundwater recharge rate estimates in the eastern GAB groundwater intake beds; new groundwater system conceptual models of groundwater recharge processes and groundwater flow; an assessment of the Gravity Recovery and Climate Experiment (GRACE) satellite derived groundwater storage change estimates for the GAB; and Interferometric Synthetic Aperture Radar (InSAR) satellite data, for detecting changes in groundwater levels.

  • This report presents palynological data compiled and analysed as part of Geoscience Australia’s ‘Assessing the Status of Groundwater in the Great Artesian Basin’ project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion. Diverse historic nomenclature within the Great Artesian Basin (GAB) Jurassic‒Cretaceous succession in different parts of the GAB makes it difficult to map consistently GAB resources across borders, at a basin-wide scale, in order to provide a geological and hydrogeological framework to underpin effective long-term management of GAB water resources. The study undertaken by MGPalaeo, in collaboration with Geoscience Australia, examined 706 wells across the GAB and compiled 407 wells, having Jurassic‒Cretaceous succession, with reviewed palynology data (down to total depth). This initial palynology data review allowed identification of new data samples from 20 wells (within the 407 wells) in Queensland and South Australia to fill data and knowledge gaps within the Jurassic‒Cretaceous GAB succession. This study resulted in: 1) a summary compilation of existing palynology data on 407 wells selected to create a regional framework between the Surat, eastern Eromanga and western Eromanga basins, to help regional correlations across the GAB, 2) a review of several different palynology zonation schemes and adaptation to a single consistent scheme, applying the scheme of Price (1997) for the spore pollen zonation and Partridge (2006) for the marine zonation, 3) updated stratigraphic charts across the Surat, Eromanga and Carpentaria basins, 4) identification of data and knowledge gaps, and 5) sampling of new palynology data to help fill some data and knowledge gaps identified in 13 key wells in the Surat Basin and 10 key wells in the Eromanga Basin. In the Surat Basin the new sampling program has targeted units within: the Evergreen Formation, Hutton Sandstone, Springbok Sandstone, Gubberamunda Sandstone, Orallo Formation, Mooga Sandstone, Bungil Formation. In the Eromanga Basin the sampling program targeted units within: the Poolowanna Formation, Hutton Sandstone, Adori Sandstone, Algebuckina Sandstone, Namur Sandstone and Hooray Sandstone. The study undertaken by MGPalaeo, in collaboration with Geoscience Australia, provides updated biostratigraphic information compiled in a standardised chronostratigraphic framework across the Surat, Eromanga and Carpentaria basins that mostly comprise the GAB. This work allows comparison of various geological, lithological, hydrogeological schemes. It provides links between various lithostratigraphic units, with different nomenclature, across jurisdictions. It also links these units to some key regional chronostratigraphic markers that can be used to generate consistent surfaces that correlate to aquifer and aquitard boundaries. The compilation of legacy and newly sampled and analysed palynology data allows refinement of a regional chronostratigraphic framework that can be used to map a common Mesozoic play interval scheme across all the resource types, for basin-scale assessments of groundwater, hydrocarbons, carbon capture and storage, and mineral potential. From this correlation of time equivalent geological units deposited in different environments, it is then possible to map internal lithological variations in stratigraphic facies within sequences that influence hydraulic properties and connectivity within and between aquifers across the GAB. The updated geometry and variability mapping within and between aquifers will help refine the conceptual hydrogeological model, to assess how aquifers and aquitards are connected within the GAB. The revised conceptual hydrogeological model can facilitate an improved understanding of potential impacts from exploitation of sub-surface resources in the basin, providing a basis for more robust water balance estimates.